Differential equations and logarithmic intertwining operators for strongly graded vertex algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak modules and logarithmic intertwining operators for vertex operator algebras

We consider a class of weak modules for vertex operator algebras that we call logarithmic modules. We also construct nontrivial examples of intertwining operators between certain logarithmic modules for the Virasoro vertex operator algebra. At the end we speculate about some possible logarithmic intertwiners at the level c = 0. Introduction This work is an attempt to explain an algebraic reform...

متن کامل

Logarithmic Intertwining Operators and Vertex Operators

This is the first in a series of papers where we study logarithmic intertwining operators for various vertex subalgebras of Heisenberg vertex operator algebras. In this paper we examine logarithmic intertwining operators associated with rank one Heisenberg vertex operator algebra M(1)a, of central charge 1 − 12a . We classify these operators in terms of depth and provide explicit constructions ...

متن کامل

Logarithmic intertwining operators and associative algebras

We establish an isomorphism between the space of logarithmic intertwining operators among suitable generalized modules for a vertex operator algebra and the space of homomorphisms between suitable modules for a generalization of Zhu’s algebra given by Dong-Li-Mason.

متن کامل

Differential equations and intertwining operators

We show that if every module W for a vertex operator algebra V = ∐ n∈Z V(n) satisfies the condition dimW/C1(W ) < ∞, where C1(W ) is the subspace of W spanned by elements of the form u−1w for u ∈ V+ = ∐ n>0 V(n) and w ∈W , then matrix elements of products and iterates of intertwining operators satisfy certain systems of differential equations. Moreover, for prescribed singular points, there exi...

متن کامل

LOGARITHMIC INTERTWINING OPERATORS AND W(2,2p − 1)-ALGEBRAS

For every p ≥ 2, we obtained an explicit construction of a family of W(2, 2p − 1)-modules, which decompose as direct sum of simple Virasoro algebra modules. Furthermore, we classified all irreducible self-dual W(2, 2p − 1)-modules, we described their internal structure, and computed their graded dimensions. In addition, we constructed certain hidden logarithmic intertwining operators among two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2017

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199716500097